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1 Introduction

The ILC is a forthcoming, planned linear collider that will have mainly

electron-positron collisions. This will complement the developments at the

Large Hadron Collider (LHC), which has proton-proton collisions. So far, the

plans include the first stage of the ILC to stretch to thirty one kilometers. As

of right now, the site for construction is yet undetermined, but almost 300

laboratories and universities around the world are working on development of

the ILC, with approximately 700 people working on design of the accelerator

and 900 on the design of the detector [1].

There are two factors that measure the quality of an accelerator: lumi-

nosity and energy. The ILC will have the highest luminosity and energy of

any similar collider in the world. The goal energy of the colliding beams is

around 500 GeV for the first stage of the project, with an option to expand

this to 1 TeV in four to ten years after operation begins. To reach these

goals, the electric fields that the electrons and positrons will be accelerated

with will be around 30-31 MV/m.

The luminosity factors are expected to be around 500 fb−1 for the first

stage when the energy is 500 GeV, and around 1000 fb−1 when the energy

is 1 TeV in the second stage. Luminosity is defined as the particle flux per

unit of area per second and has the unit of inverse femtobarns per second,

where a femtobarn is equal to 10−43m2. Although this may seem to be very

large, when it is multiplied by the cross section of a process, generally a
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small number, it will give the total number of interactions recorded in the

experiment per second. When equal, Gaussian beams collide head-on, the

luminosity reads

L = f0
N2

4πσxσy
,

where f0 is the collision frequency, N the beam population, and σx,y the

beam transverse dimensions.

The particles, electrons and positrons, are sent around two circular rings

for a short time before being injected into the actual collider towards one

another, where they still speed up further before colliding. The actual collider

is a long, straight (thus the ”linear” in ILC), narrow tunnel between the

injector rings where the interaction takes place. The collision between the

two beams takes place in a conducting, cylindrical beam pipe, with a diameter

of about 2.5 cm. At the point where they finally collide, called the Interaction

Point, each beam is shaped like a long, super thin, strip of paper. They are a

hundred thousand times longer than higher, and a hundred times wider than

higher. Some of the beam parameters are listed in Table 1.

Parameter Value
Beam Energy 500GeV (upgradeable to 1TeV )
Pipe Radius 2.5cm
Bunch Length (σz) 0.03cm
Bunch Height (σy) 0.0057µm
Bunch Width (σx) 0.639µm
Bunch Population (N) 1011

Table 1: ILC beam parameters at the Interaction Point, from Ref.[2].



6

The goal of this is to get two of these beams that are traveling towards

each other at a velocity equal to (1− 0.5× 10−12) times the speed of light,1

or 99.99999999995% of the speed of light, to collide. Obviously, this is a

difficult feat to accomplish, and there are many things that can go wrong.

The first thing to consider is that the beams must hit each other. As one

can imagine, it is not easy to hit a moving target that is 6 nanometers high

from many kilometers away.

Once the problem of getting the beams near each other is solved, the

question of interest becomes what happens when the beams collide? When

they collide, each particle in first beam is attracted towards the center of

the second beam by the attractive electro-magnetic force due to the beams

having opposite charges. Each particle experiences a transverse force, and

the bending produces synchrotron radiation (radiation from accelerating ra-

dially) which has been termed beamstrahlung.

Beamstrahlung can and has been used to make sure that the beams collide

properly[3], so that optimal transverse overlap and therefore optimal lumi-

nosity can be achieved and maintained. Here, we are interested in the part

of the beamstrahlung spectrum with wavelengths λ ≥ σz, the beam length.

These are wavelengths in the far infrared and microwave ranges.

When considering this spectrum region, the possibility exists that the

beam is radiating coherently, that is, the whole beam radiates as if it were a

1Using E = γmec
2 = mec

2√
1−( v

c )
2
and plugging in the right values for E (500GeV ,) me,

and c, one can solve for the beam velocity, v, and get (1− 0.5 ∗ 10−12)c.
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single particle, with each particle wave interfering constructively with each

other particle. The opposite, incoherent radiation, is the norm in accelerator

radiation phenomena, which means each particle in the beam is radiating on

its own, with a net total wave superposition of zero with the other particles.

Radiation intensity of a single particle depends on the charge of the radiat-

ing particle squared, I ∝ q2. So, incoherent radiation produces the intensity

of a single particle times the number of particles in a beam: I ∝ N(q2),

where q is the electron charge. Coherent radiation is boosted by another

factor of the number of particles in a beam due to superposition, and gives

gives I ∝ (Nq)2. The difference is a factor N ∼ 1011, which makes it a

potentially very large effect, with numerous consequences.

Ref.[4] does, in fact, provide an estimate for the presence or lack thereof

of a coherent regime:

σz < λ < 2R
√

2R/ρ, (1)

where R is the beam pipe diameter (25 mm in our case) and ρ is the radius

of curvature of the particle during the beam-beam collision.

The radius of curvature is related to the beam parameters including the

beam energy and magnetic field as follows

p ∼ E = qBρ, (2)

B ∼ Nqc

σxσz
. (3)

In present electron-positron colliders, ρ has a typical value of tens of
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meters, σz ∼ R, and Eq. 1 is never satisfied. At the ILC, using the values in

Tab. 1, one obtains a curvature radius of order one meter, and

0.3mm < λ < 3mm. (4)

Therefore, at the ILC, and only at the ILC, coherent beamstrahlung, in

the indicated region, may exist.

This Thesis is the first step towards calculating coherent beamstrahlung.

The intended method is via simulation of the beam-beam interaction, using

a standard method of dividing the beam plasma into cells [5], and generating

and adding the EM waves produced at each step of the interaction.

These waves are related to the radiated intensity |A(ω)|2, at a given

frequency ω, by the following equations [6]

A(ω) =
1√
2π

∫ ∞
−∞

A(t)eiωtdt, (5)

d2I

dωdΩ
= 2|A(ω)|2. (6)

A(t) is the EM potential, and is proportional to the electric field of the

beam

A(t) = lE(t) A(ω) = lE(ω),

where l is the distance from the point of measurement to the radiating point.

Thus, at the core of the problem is a calculation of the electric field of the

beam.
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The electric field is not calculable from first principles. At the beam pipe,

the field goes to zero. The goal of this Thesis is to compute the field of the

beam in the presence of the boundaries set by the conducting beam pipe.

With this in mind, we used the method of Greene functions in the presence

of potential boundary conditions, a so-called Dirichlet problem, to find the

electric potential in the pipe from a single beam. From this, the electric field

was derived and numerical estimations of the energy density were made. To

start the calculations, we started with a couple goals and approximations in

mind. We wanted to be accurate in our results to at least one part in one

hundred. Using this, we can assume the beam to be one dimensional because

the height and width of the beam are both much, much shorter than the

length (Table 1).

Dirac delta functions were used to describe these two dimensions, and we

then dealt with a line of charge instead of a volume. We treated the beam

as an ultra-relativistic beam, since it is so close to the speed of light anyway.

It was easy to see that this problem had cylindrical symmetry. Seeing

this, we naturally switched to cylindrical coordinates. After looking at the

beam along the axis of the pipe, we then displaced it by an amount ~r =

x0x̂+ y0ŷ = r0r̂ + r0θ0θ̂. Due to this symmetry, it’s easily seen that under a

rotation, we can keep the beam along the x-axis for simplicity: ~r = x0x̂ = r0r̂.

To solve this problem, Dirichlet boundary conditions had to be applied

as the beam pipe is at ground (Φ(r = R) = 0). After solving for the electric

potential, a gradient calculation was done to find the electric field.
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2 Beam in a cylindrical beam pipe.

It is important to discuss first the general properties of the beam and the

beam pipe we seek to model. At the International Linear Collider (ILC), the

beam typical dimensions are 300µm along the beam pipe axis, chosen to be

the z−axis, 5.7nm in the vertical direction, chosen to be the y−axis, and 639

nm in the horizontal direction, chosen to be the x−axis.

The beam pipe diameter is 2.5 cm. With two out of three dimensions

well below 0.1% of the beam pipe diameter, the beam charge distribution is

ρ(x, y, z, t) = δ(x)δ(y)λ(z), (7)

where λ(z) is the linear charge density of the beam

λ(z) =
Nq√
2πσz

e−(z−ct)
2/2σ2

z .

In Eq. 7, we have made use of the Dirac delta in the two transverse

directions, while keeping the Gaussian beam distribution along the direction

of motion. The beam is assumed to move at the speed of light, since its

relativistic factor γ is about 106, which means that the beam velocity β is

equal to 1− 10−12.

If the beam is not on the center of the beam pipe it is sufficient to replace

δ(x)δ(y) with δ(x − x0)δ(y − y0). The beam current density is also easily
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obtainable:

J(x, y, z, t) = cρ(x, y, z, t)ẑ. (8)

In the extremely relativistic regime we are considering, the electric field

produced by the beam is transverse. From Ref.[6], the transverse and longi-

tudinal (z-component) electric fields are, in cylindrical coordinates,

Ez = − qγβct

(r2 + (γβct)2)3/2
, (9)

ET =
qγr

(r2 + (γβct)2)3/2
. (10)

Form these formulas, one can easily derive that

(Ez)max =
√

4/27
q

r2
, (11)

(ET )max =
qγ

r2
, (12)

∆t ∼ r

γβc
, (13)

where ∆t is the full width half maximum (FWHM) duration of the interaction

with a probe charge located at a radius r. The length of flight ∆z = c∆t ∼
r
γβ
∼ r

γ
during which a charge affects the electric field at the beam pipe

(r = R = 1.25 cm) is 12.5 nm in our case, which is small compared to the

beam length. Further, the longitudinal field is suppressed by a factor of γ

compared to the transverse field, and it is set to zero in this calculation.

Our problem simplifies to finding the transverse electric field of a thin line

of charge, in a beam pipe. The time dependence of the field is obtained by
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replacing z with (z−ct), so the problem becomes essentially an electrostatics

problem. The magnetic field is then automatically radial, with B = E/c, so

that the force on a test particle at any given location is given by F = 2qE.

The electrostatic problem is solved in the next Section.
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3 Calculation of the electric Potential.

The presence of a grounded, conductive beam pipe of radius R is equiv-

alent to setting the electric potential Φ(R) = 0. Conductivity also implies

that the electric field components along the beam pipe surface are also zero,

Eθ = Ez = 0.

The solution is found combining methods found in Ref.[6] and Ref.[7].

In Ref.[7], the fields were calculated for a beam circulating in a pill box

conducting cavity, but the same Fourier series that they use as a starting

point is used here later in this Section.

The starting point is Poisson’s equation in cylindrical coordinates ob-

tained from Ref.[6]:

∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
+
∂2Φ

∂z2
=
−ρ
ε0
. (14)

Since the z component of the electric field is reduced from the other

components ( Ez

ET
) by a factor on the order of γ, Ez is negligible, and the

following approximations hold:

Ez = 0 (15)

Ez =
∂Φ

∂z
(16)

∂Φ

∂z
= 0 (17)

∂2Φ

∂z2
= 0. (18)
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The δ function in cylindrical (radial) coordinates is

δ(x− x0)δ(y − y0) =
δ(r − r0)δ(θ − θ0)

r
,

and the density becomes

ρ =
Nqe−(z−ct)

2/2σ2
z

√
2πσz

δ(r − r0)δ(θ − θ0)
r

. (19)

Using this information, Eq. 14 becomes

∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
=
Nqe−(z−ct)

2/2σ2
z

√
2πε0σz

δ(r − r0)δ(θ − θ0)
r

. (20)

The first fraction on the right hand side is just a constant here, and it is

set equal to k to make the equations more presentable.

A form of the solution similar to Ref.[7] is now taken

Φ(r, θ) = kΣ∞0 φn(r)ein(θ−θ0). (21)

Two comments are in order: first, the dependence on r0 is not explicit in

Eq. 21, although it will be made explicit shortly. Second, as Fig.[1] shows,

the solution must necessarily be even in (θ − θ0), so that

Φ(r, θ) = kΣ∞0 φn(r) cos (n(θ − θ0)). (22)

Derivatives are now evaluated.
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Figure 1: Diagram of the beam pipe with two points, P1 and P2 labeled along
with θ0. It is seen in this figure that no matter where the beam is shifted
inside of the pipe, the fields created by this beam will be symmetric about
the beam; any fields created by a particular beam along this particular θ0
will be equivalent at P1 and P2 due to symmetry.

∂Φ

∂r
= kΣ∞0

∂φn
∂r

cos (n(θ − θ0)), (23)

∂2Φ

∂r2
= kΣ∞0

∂2φn
∂r2

cos (n(θ − θ0)), (24)

∂2Φ

∂θ2
= −kΣ∞0 n

2φn cos (n(θ − θ0)). (25)
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The Poisson equation now becomes, term by term,

kΣ∞0 (
∂2φn
∂r2

+
1

r

∂φn
∂r
− n2

r2
∂2φn
∂θ2

) cos (n(θ − θ0)) =
kδ(r − r0)δ(θ − θ0)

r
. (26)

The k factor can be simplified during the solution of the differential equa-

tions, and put back at the end when quoting the solution for Φ. Each side

of the equation is multiplied by cos (m(θ − θ0)) and integrated over [0, 2π].

The integral values of the l.h.s. are

∫ 2π

0
cos (n(θ − θ0)) cos (m(θ − θ0))dθ = πδnm

if n 6= 0 and

∫ 2π

0
cos (n(θ − θ0)) cos (m(θ − θ0))dθ = 2πδnm,

with δnm being the Kronecker delta. If n = 0. The r.h.s integral is equal to

1 for all n,m.

So, for n = 0 the radial differential equation reads

(
∂2φ0

∂r2
+

1

r

∂φ0

∂r
) =

δ(r − r0)
2πr

. (27)

and for n 6= 0,

(
∂2φn
∂r2

+
1

r

∂φn
∂r
− n2

r2
φn) =

δ(r − r0)
πr

. (28)
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Eq. 27 can be solved by multiplying by r, and recalling that the Dirac

δ is zero everywhere except at r0. We introduce a dependence on r0 in the

solution

φ0 = A ln r +B, r < r0 (29)

φ0 = C ln r +D, r > r0. (30)

To avoid infinities at the origin, A = 0. The condition Φ(R) = 0 implies

that D = −C lnR. Finally, the equality of the two functions at r0 implies

that B = C ln r0/R.

Having only one unknown C in our equation, we resort to the gradient dis-

continuity technique in Ref.[6]. We start by multiplying the main differential

equation Eq. 27 by r on both sides to get

r
∂2φ0

∂r2
+
∂φ0

∂r
=
δ(r − r0)

2π
. (31)

We then integrate from r−0 to r+0 to get rid of the delta function:

∫ r+0

r−0

(r
∂2φ0

∂r2
) +

∫ r+0

r−0

(
∂φ0

∂r
) =

1

2π
. (32)

Integrating by parts on the first term on the right, and canceling the resulting

integral with the remaining one, we are left with

r
dφ0

dr
|r+0 −

dφ0

dr
|r−0 =

1

2π
(33)
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C =
1

2π
. (34)

The result is C = 1/2π, so that

φ0 =
1

2π
ln r0/R r < r0 (35)

φ0 =
1

2π
ln r/R, r > r0. (36)

The differential equations for n 6= 0 have an extra term, which rules out

the logarithmic solution and allows a polynomial solution. It is easy to prove

that the solution is

φn = Arn +Br−n, r < r0 (37)

φn = Crn +Dr−n, r > r0. (38)

To avoid infinities at the origin, B = 0. The condition Φ(R) = 0 implies

that D = −CR2n. Finally, the equality of the two functions at r0 implies

that A = C(1− (R/r0)
2n).

Having only one unknown C in our equation, we resort to the gradient

discontinuity technique in Ref.[6], as seen used for the case with n = 0. We

start with Eq. 28, and arrive at

dφn
dr
|r+0 −

dφn
dr
|r−0 =

1

πr0
(39)

nCrn−10 − nDr−n−10 − nArn−10 =
1

πr0
(40)
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Crn−10 + CR2nr−n−10 − Crn−10 (1− (R/r0)
2n =

1

nπr0
(41)

C(rn0 +R2nr−n0 − rn0 (1− (R/r0)
2n) =

1

nπ
(42)

C(rn0 +R2nr−n0 − rn0 + rn0 (R/r0)
2n) =

1

nπ
(43)

C(2rn0 (R/r0)
2n) =

1

nπ
(44)

C(2(R2/r0)
n) =

1

nπ
(45)

C = (1/2πn)(r0/R
2)n (46)

The result is C = (1/2πn)(r0/R
2)n, so that

φn =
1

2πn
(r0r/R

2)n(1− (R/r0)
2n) r < r0 (47)

φn =
1

2πn
(r0r/R

2)n(1− (R/r)2n) r > r0. (48)

We now reintroduce the quantity k to provide the solutions

Φ =
k

2π
(ln r0/R + Σ∞1 (1/n)(r0r/R

2)n(1− (R/r0)
2n) cos (n(θ − θ0)) r < r0

Φ =
k

2π
(ln r/R + Σ∞1 (1/n)(r0r/R

2)n(1− (R/r)2n) cos (n(θ − θ0)) r > r0

According to Ref.[8],

Σ∞1 (an/n) cos (nb) = −1

2
ln (1− 2a cos b+ a2).

Substituting, one arrives at the same solution, whether r is greater or
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lower than r0

Φ(r, θ) =
Nqe−(z−ct)

2/2σ2
z

(2π)3/2ε0σz
ln
R4 + (r0r)

2 − 2r0rR
2 cos (θ − θ0)

R2(r20 + r2 − 2r0r cos (θ − θ0))
. (49)

Or, more simply,

Φ(r, θ) =
Nqe−(z−ct)

2/2σ2
z

(2π)3/2ε0σz
ln
R2 + (r0/R)2r2 − 2r0r cos (θ − θ0)

(r20 + r2 − 2r0r cos (θ − θ0))
. (50)

Figure 2: Plot of the Electric Potential with R = 10, r0 = 3, θ0 = 0, and
k = 1 (Rotated to show details) Ref.[9]
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4 Calculation of the Electric Field

Now, we are interested in finding the electric field inside of the pipe that

is given by this potential. The equation for finding the electric field from a

potential is given by

~E = −~∇Φ (51)

~E = −(
d

dr
Φ(r, θ)r̂ +

1

r

d

dθ
Φ(r, θ)θ̂ +

d

dz
Φ(r, θ)ẑ) (52)

But d
dz

Φ(r, θ) = 0 so we are only left with the r and θ components, which

are are simply single derivatives, and turn out to be

Er = −k 2(r20 −R2)(r(r20 +R2)− r0(R2 + r2)C(∆θ))

(r20 + r2 − 2rr0C(∆θ))(R4 + r20r
2 − 2r0rR2C(∆θ))

(53)

Eθ = −k 2r0r(r
2
0 −R2)(R2 − r2)S(∆θ)

(r20 + r2 − 2rr0C(∆θ))(R4 + r20r
2 − 2r0rR2C(∆θ))

(54)

Ez = 0, (55)

where cos (θ − θ0) and sin (θ − θ0) are abbreviated to C(∆θ) and S(∆θ), re-

spectively, for space purposes.
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For graphical purposes, these were also translated to cartesian equations.

Ex = k[
R2x0 − xr20

(R2 − xx0 − yy0)2 + (xy0 − yx0)2
+

x− x0
(x− x0)2 + (y − y0)2

](56)

Ey = k[
R2y0 − yr20

(R2 − xx0 − yy0)2 + (xy0 − yx0)2
+

y − y0
(x− x0)2 + (y − y0)2

],(57)

where r0 = x20 + y20.

Figure 3: Plot of the Electric Field Squared (E2 = E2
x + E2

y) with R = 10,
r0 = x0 = 3, y0, θ0 = 0, and k = 1 (Rotated to show details) Ref.[9]

As for the electric field at the pipe itself, when r = R, we find that

~Eθ = ~Ez = 0, as we would expect.

Now we need a numerical computation of
∫
E2da, which, in radial coordi-

nates, becomes
∫
E2rdrdθ. We started with the assumption that r0 = θ0 = 0

to make sure when we did calculate this for an off center beam, we were on
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the right track.

When r0 = θ0 = 0

Φ(r, θ) =
Nqe−(z−ct)

2/2σ2
z

(2π)3/2ε0σz
ln
R2

r2

Or simply

Φ(r, θ) = k ln
R2

r2
,

Since ~E = −∇Φ, ~Er = 2k/r, ~Eθ = ~Ez = 0, we have E2 = 4k2/r2.

Let S =
∫ ∫

E2da be a two-dimensional representation of energy density,

and that to find the actual energy density, we would integrate this expression

in the z direction.

S0 =
∫ ∫

E2da (58)

=
∫ R

ε

∫ 2π

0

4k2

r2
rdrdθ (59)

=
∫ R

ε

∫ 2π

0

4k2

r
drdθ (60)

= 8πk2 ln (
R

ε
) (61)

(62)

Where ε is used instead of zero due to an infinite limit that will be set to

a small radius around the beam, and S0 is just the two-dimensional energy

density of a beam centered on the axis. S0 is named because we can treat
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the next section as a perturbation of this one, describing the final result in

terms of S0 and correction terms.

If we assume that the beam is off center by a small amount on the x-axis,

δ = x0/R = r0/R, then we have θ0 = 0. Rewriting the potential with this in

mind, we find that the potential becomes

Φ = k ln
δ2r2 − 2Rδr cos θ +R2

r2 − 2R2δcosθ +R2δ2
(63)

When δ is small, we can make the assumption that −1 < δ < 1 and we

can express this potential in a Taylor Series expansion in δ as follows

Φ = k[ln
R2

r2
+(2 cos (θ)(

R

r
− r

R
)δ+(1−2 cos (θ)2)(

1

r2R2
)(r4−R4)δ2 +O(δ3)]

(64)

Higher order terms that include the factor δn|n ≥ 3 can be ignored be-

cause they only add to this approximation by a very minute amount, and

the accuracy that we have is quite good enough for the experiment at hand.

Calculating the components of the electric field in this simplified approx-

imation is much easier to do, since we are now dealing with derivatives of

a quadratic polynomial as opposed to declivities of a logarithm involving

polynomials. As with before,

~E = −~∇Φ (65)

~E = −(
d

dr
Φ(r, θ)r̂ +

1

r

d

dθ
Φ(r, θ)θ̂ +

d

dz
Φ(r, θ)ẑ) (66)
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d

dz
Φ(r, θ) = 0 (67)

The radial and angular components are also calculated the same as before,

simple single derivatives of the potential.

Er =
d

dr
(k(ln

R2

r2
+(2 cos (θ)(

R

r
− r

R
)δ+(1−2 cos (θ)2)(

(r4 −R4)

r2R2
)δ2)) (68)

Er = k(−2

r
− 2δ cos (θ)

r2R
(R2 − r2) +

2δ2

r3R2
(r4 +R4)(1− 2 cos (θ)2)) (69)

Eθ =
1

r

d

dθ
(k(ln

R2

r2
+(2 cos (θ)(

R

r
− r

R
)δ+(1−2 cos (θ)2)(

(r4 −R4)

r2R2
)δ2)) (70)

Eθ = k(− 2δ

r2R
(R2 − r2) sin (θ) +

4δ2

r3R2
(r4 −R4) cos (θ) sin (θ)) (71)

Now we again need a numerical computation of
∫
E2da, which, in radial

coordinates, becomes
∫
E2rdrdθ. Neglecting O(δn), n ≥ 3 terms, we’re left

with

S =
∫ R

ε

∫ 2π

0
r(E2

r + E2
θ )drdθ (72)

=
∫ R

ε
8πk2r(

R4r4 + r2(R3 −Rr2)2δ2

R4r6
)dr (73)

= 4πk2((
r2

R2
− R2

r2
)δ2 + (2− 4δ2) ln r)|r=Rr=ε (74)

= 8πk2 ln (
R

ε
)− 4πk2δ2(4 ln (

R

ε
) + (

R4 + ε4

R2ε2
)) (75)

= S0 − δ2(
S0

2
+ 4πk2(

R4 + ε4

R2ε2
)) (76)
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Where ε is a lower boundary close to the source. Since we used a delta

function for the source, at the charge, any electric field or energy density

would be infinite without this bound that is not zero. This is as was expected:

the initial two-dimensional energy density with correction terms of δ2.
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5 On the Possibility of Beamstrahllung

In the following equations, the variables are as follows: E is the beam

energy, p is the momentum of the bunch, σx, σy, σz are the bunch length,

height (which is negligible for these calculations) and length, R is the radius

of the beam pipe, B is the magnetic field immediately around the beam, N

is the number of particles in a bunch, and ρ is the radius of curvature for the

trajectory of the beam.

As seen in Ref.[4], to have coherent synchrotron radiation, the following

condition must be met:

2R

√
2R

ρ
> λ > σz (77)

We already have the beam pipe radius and the length of the bunch, so

we now need to find the radius of curvature of the beam. We assume that

the two beams are very close to eachother and the distance between them,

h, is mostly negligible. We then look at the motion of the first beam in the

presence of the magnetic field of the second. Balancing forces, and assuming

the field will be perpendicular to the beam, we have

Fmagnetic = Fcentripetal (78)

evB =
mv2

ρ
(79)
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solving for ρ, we get

ρ =
p

eB
, (80)

where p is the momentum of the beam.

From elementary special relativity,

E2 = p2c2 + (me)
2c4 (81)

p =

√
E2

c2
− (me)2c2 (82)

or since E2

c2
� (me)

2c2,

p =
E

c
(83)

Now, we find the magnetic field due to the second beam at a height, h,

above the beam. Since this height is very small, and also the beam is very

thin, we can treat the beam as an infinitely large, charged plane, moving

under the point of measurement at a velocity c. This was set up such the

beam was moving in the ẑ direction, spanned the xz axis, and the observation

point was at hŷ. From Ref.[10], we have

~B(~r) =
µ0

4π

∫ ~K(~r′)×~r
r2

da (84)

where ~K is the surface current density, ~B is the magnetic field, ~r is the

postion of measurement, ~r is the position of charge relative to the point of
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observation, and da′ is the differential area of the surface of charge. From

the statement of the problem, we have the surface current density (K) equal

to the surface charge density (σ) times the beam velocity (v)

~K = σ~v (85)

~K = −Nec
σzσx

ẑ (86)

~r =
xx̂+ hŷ + zẑ√
x2 + h2 + z2

(87)

r2 = x2 + h2 + z2 (88)

da′ = dxdz (89)

Putting these variables into the magnetic field, we have

~B = − µ0Nec

4πσzσx

∫ ∞
−∞

∫ ∞
−∞

xŷ − hx̂
(x2 + h2 + z2)

3
2

dxdz (90)

~B =
µ0Nec

2σzσx
x̂ (91)

After combining the previous results, we find that

ρ =
2σzσxE

c2e2µ0N
(92)

We then looked at this radius of curvature and the condition for CSR to

see if it was met for the two accelerators in question. Below is a short table

of different properties from each accelerator:
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Variable [4] ILC CESR
N 2 ∗ 1010 1.15 ∗ 1010

σx 6.39 ∗ 10−7m 4.60 ∗ 10−4m
σz 3 ∗ 10−4m 1.8 ∗ 10−2m
2R 12.5 ∗ 10−3m 12.5 ∗ 10−3m
E 500GeV = 8.01 ∗ 10−8J E = 6GeV = 9.61 ∗ 10−10J

Table 2: Specific beam parameters for ILC and CESR

Using the variables given for the ILC, ρ = 0.530m, so

2R

√
2R

ρ
> λ > σz (93)

5.4 ∗ 10−3m > λ > 3 ∗ 10−4m (94)

and the condition for CSR is met.

On the other hand, using the given variables for CESR, ρ = 274m, and

2R

√
2R

ρ
> λ > σz (95)

7.6 ∗ 10−3m 6> λ > 1.8 ∗ 10−2m. (96)

The condition for CSR in a typical modern e+e− linear accelerator, CESR,

is not met. Similar calculations can be done for other accelerators, and it

will be found that the ILC will be the first accelerator that will create the

right conditions for us to be able to observe, and possibly harness, CSR.
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6 Conclusions

Through this thesis, calculations were done to find the electric field of

a narrow beam of charge in a long, conducting, hollow cylinder, and also

to comment on the possibility of observing coherent beamstrahllung at the

International Linear Collider.

Using simple approximations and parts of different techniques ([4], [6]

[10]) we were able to calculate the electric field of the electron/positron beams

at the ILC to approximately 1% error. This is a useful starting point for any

other calculations to be made in the future that are more rigorous. From

the electric field calculations, we derived an expression for a type of energy

density.

Using the electric field again, along with given information about the

collider itself, we were able to use an estimate of the parameters needed

to observe coherent beamstrahllung. As it turns out, at the ILC and no

other collider in the world, we will have the opportunity for the first time

to observe and study this phenomenon. Along with just the observation of

coherent beamstrahllung, it’s practical uses are numerous.

The ILC has the potential to create millimeter wavelength lasers with

higher energy than ever before. As with any type of laser, it may have many

uses. One use would be in the field of millimeter wavelength chemistry, where

a laser like this would be in high demand.
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When the detectors at the ILC will record a reaction, it will be compared

to theory to find correlations. If coherent beamstrahllung is observed, the sig-

nals will be approximately up to 1011 as high as just normal beamstrahllung

due to the constructive interference. If this is not taken into consideration,

and the detectors would be built for energies many orders of magnitudes

lower than this thesis predicts, then the detectors could possibly be severly

damaged by the energies released. There is also a factor of cooling and shield-

ing the detector. Again, if precautions are not taken for the ideas raised here,

even in the accelerating chambers, the particles can have destructive energies

because of the shear magnitude difference between the energies of coherent

beams and non-coherent beams.
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